Cognitive Learning of Intelligence Systems Using Neural Networks: Evidence from the Australian Capital Markets

نویسندگان

  • Joachim Tan
  • Edward Sek Wong
چکیده

Artificial neural networks (ANNs) allow users to improve forecasts through pattern recognition. The purpose of this paper is to validate ANNs as a detection tool in four financial markets. This study investigates whether market inefficiencies exist using ANN as a model. It also investigates whether additional publicly available information can provide investors with a trading advantage. In finance, any forecasting advantage obtained through the use of publicly available information albeit internal or/and external market factors suggest inefficiencies in the financial markets. In this paper, we explore the efficiency of the United States, Japan, Hong Kong and Australia. In Australia, using the ASX 200 index, we demonstrate how the inclusion of external information to our ANN improves our forecasting. Our results show accounting for external market signals significantly improves forecasts of the ASX200 index by an additional 10 percent. This suggests the inclusion of publicly available information from other markets, can improve predictions and returns for investors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cognitive Pattern Analysis Employing Neural Networks: Evidence from the Australian Capital Markets

An artificial neural network is an intelligent system using computers that allows users to improve performance through pattern recognition. Neural networks benchmark their predictions with actual results and constantly revise their predictions, improving forecasting capability. The purpose of this paper is to support the use of neural networks as a detection mechanism tool to discover market in...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

A DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing

One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...

متن کامل

A hybrid computational intelligence model for foreign exchange rate forecasting

Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008